If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 0.83t2 + -10t + 25 = 0 Reorder the terms: 25 + -10t + 0.83t2 = 0 Solving 25 + -10t + 0.83t2 = 0 Solving for variable 't'. Begin completing the square. Divide all terms by 0.83 the coefficient of the squared term: Divide each side by '0.83'. 30.12048193 + -12.04819277t + t2 = 0 Move the constant term to the right: Add '-30.12048193' to each side of the equation. 30.12048193 + -12.04819277t + -30.12048193 + t2 = 0 + -30.12048193 Reorder the terms: 30.12048193 + -30.12048193 + -12.04819277t + t2 = 0 + -30.12048193 Combine like terms: 30.12048193 + -30.12048193 = 0.00000000 0.00000000 + -12.04819277t + t2 = 0 + -30.12048193 -12.04819277t + t2 = 0 + -30.12048193 Combine like terms: 0 + -30.12048193 = -30.12048193 -12.04819277t + t2 = -30.12048193 The t term is -12.04819277t. Take half its coefficient (-6.024096385). Square it (36.28973726) and add it to both sides. Add '36.28973726' to each side of the equation. -12.04819277t + 36.28973726 + t2 = -30.12048193 + 36.28973726 Reorder the terms: 36.28973726 + -12.04819277t + t2 = -30.12048193 + 36.28973726 Combine like terms: -30.12048193 + 36.28973726 = 6.16925533 36.28973726 + -12.04819277t + t2 = 6.16925533 Factor a perfect square on the left side: (t + -6.024096385)(t + -6.024096385) = 6.16925533 Calculate the square root of the right side: 2.483798569 Break this problem into two subproblems by setting (t + -6.024096385) equal to 2.483798569 and -2.483798569.Subproblem 1
t + -6.024096385 = 2.483798569 Simplifying t + -6.024096385 = 2.483798569 Reorder the terms: -6.024096385 + t = 2.483798569 Solving -6.024096385 + t = 2.483798569 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '6.024096385' to each side of the equation. -6.024096385 + 6.024096385 + t = 2.483798569 + 6.024096385 Combine like terms: -6.024096385 + 6.024096385 = 0.000000000 0.000000000 + t = 2.483798569 + 6.024096385 t = 2.483798569 + 6.024096385 Combine like terms: 2.483798569 + 6.024096385 = 8.507894954 t = 8.507894954 Simplifying t = 8.507894954Subproblem 2
t + -6.024096385 = -2.483798569 Simplifying t + -6.024096385 = -2.483798569 Reorder the terms: -6.024096385 + t = -2.483798569 Solving -6.024096385 + t = -2.483798569 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '6.024096385' to each side of the equation. -6.024096385 + 6.024096385 + t = -2.483798569 + 6.024096385 Combine like terms: -6.024096385 + 6.024096385 = 0.000000000 0.000000000 + t = -2.483798569 + 6.024096385 t = -2.483798569 + 6.024096385 Combine like terms: -2.483798569 + 6.024096385 = 3.540297816 t = 3.540297816 Simplifying t = 3.540297816Solution
The solution to the problem is based on the solutions from the subproblems. t = {8.507894954, 3.540297816}
| 27a^7/7a^9 | | 3x+4=7x-21 | | 2x+4x+0.25x=100 | | 2x^2-39x-37=0 | | sqrt(2m-3)=sqrt*(m+7)-2 | | 1.5x-0.5=-3.5 | | 5x^4(2x^2+7)= | | 7-(4n-1)=8-5n | | 5x-3y-9=0 | | 5x^2=-5/16 | | 2l+2w=7500-2x | | 8k=4k-16 | | 4y+7=12x | | 2x^2+19x=9 | | 2x(-4x^3+8x^2)= | | xy-3x=9 | | 2-3(y+1)=11-4(x+1) | | 2xcubed=128 | | 2925=n(17.5+2.5n) | | x*6+46=x*12-6 | | ab+a+b+ba= | | 75w-27-75-14w+156=0 | | 2xy^2(2xy^2-7xy+4x)= | | -.65p-2=.35p | | 5x^2+16x+5=0 | | 5.75x+6=14.5x+13 | | 4x-3xy=0 | | 4(x-2)=14 | | 6-18=-3z | | 4(2y+4)= | | 23u+2-12u+72=2 | | p(x)=-16x^2+32x |